Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Lab Chip ; 21(15): 2913-2921, 2021 08 07.
Article in English | MEDLINE | ID: covidwho-1279909

ABSTRACT

Decades of research have shown that biosensors using photonic circuits fabricated using CMOS processes can be highly sensitive, selective, and quantitative. Unfortunately, the cost of these sensors combined with the complexity of sample handling systems has limited the use of such sensors in clinical diagnostics. We present a new "disposable photonics" sensor platform in which rice-sized (1 × 4 mm) silicon nitride ring resonator sensor chips are paired with plastic micropillar fluidic cards for sample handling and optical detection. We demonstrate the utility of the platform in the context of detecting human antibodies to SARS-CoV-2, both in convalescent COVID-19 patients and for subjects undergoing vaccination. Given its ability to provide quantitative data on human samples in a simple, low-cost single-use format, we anticipate that this platform will find broad utility in clinical diagnostics for a broad range of assays.


Subject(s)
COVID-19 , Optics and Photonics , Biological Assay , COVID-19 Testing , Cost-Benefit Analysis , Humans , SARS-CoV-2
2.
Biosens Bioelectron ; 171: 112679, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-983076

ABSTRACT

The 2019 SARS CoV-2 (COVID-19) pandemic has illustrated the need for rapid and accurate diagnostic tests. In this work, a multiplexed grating-coupled fluorescent plasmonics (GC-FP) biosensor platform was used to rapidly and accurately measure antibodies against COVID-19 in human blood serum and dried blood spot samples. The GC-FP platform measures antibody-antigen binding interactions for multiple targets in a single sample, and has 100% selectivity and sensitivity (n = 23) when measuring serum IgG levels against three COVID-19 antigens (spike S1, spike S1S2, and the nucleocapsid protein). The GC-FP platform yielded a quantitative, linear response for serum samples diluted to as low as 1:1600 dilution. Test results were highly correlated with two commercial COVID-19 antibody tests, including an enzyme linked immunosorbent assay (ELISA) and a Luminex-based microsphere immunoassay. To demonstrate test efficacy with other sample matrices, dried blood spot samples (n = 63) were obtained and evaluated with GC-FP, yielding 100% selectivity and 86.7% sensitivity for diagnosing prior COVID-19 infection. The test was also evaluated for detection of multiple immunoglobulin isotypes, with successful detection of IgM, IgG and IgA antibody-antigen interactions. Last, a machine learning approach was developed to accurately score patient samples for prior COVID-19 infection, using antibody binding data for all three COVID-19 antigens used in the test.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Biosensing Techniques/instrumentation , Clinical Laboratory Techniques , Coronavirus Infections/blood , Pneumonia, Viral/blood , Antibodies, Viral/immunology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Dried Blood Spot Testing , Equipment Design , Fluorescence , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lab-On-A-Chip Devices , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL